backBack to 1/2015
Technical Issues
1/2015 pp. 22-29

Synteza oraz potencjalne zastosowania modyfikowanych uporządko-wanych krzemionek mezoporowatych

pdf Get full text pdf


For many years design and synthesis of inexpensive, environmentally friendly and selective solid catalysts, has been an important and challenging goal in chemical research. Hybrid materials are of interest from the commercial and scientific point of view because they potentially offer the combination of inorganic and organic properties. In 1999 three groups independently developed a novel class of organic-inorganic nanocomposites, known as PMO’s (Periodic Mesoporous Organosilicas). In those materials organic groups are located within the structural tectons bridging at least two Si tetrahedral centers. Functional moieties may be incorporated into silica matrix in three different ways: 1) by grafting trialcoxyorganosilanes (R’O)3SiR onto the surface of silica; 2) by applying “one-pot” synthesis, which is based on the hydrolysis and condensation between a simple alcoxysilane (R’O)4Si and trialcoxyorganosilanes bearing functional groups (R’O)3SiR; 3) by a condensation of bis-silylated organic compounds (R’O)3Si–R–(OR’)3. So far the PMO-related research was focused mainly on the incorporation of various organic groups in order to design materials for adsorption applications and only limited number of materials was designed for catalysis. However, it is supposed that modifications with heteroatoms will alter chemical and physical properties of these materials due to large difference in the valence, coordination number, atomic weight and electronegativity between silicon and metallic elements. It is already known that pure silicas or organosilicas themselves are catalytically inactive in many reactions. Nevertheless, when metal atoms such as Al, Ti or other d-elements are incorporated into their frameworks, catalytically active sites can be generated.

Key words

mesoporous silica materials, grafting, co-condensation, PMO’s


1. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L., A new family of mesoporous molecular sieves prepared with liquid crystal templates, JACS, 1992, 114, pp. 10834-10843.

2. Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 1997, 97, pp. 2373-2419.

3. Taguchi, A., Schüth, F., Ordered mesoporous materials in catalysis, Micropor. Mesopor. Mater., 2005, 77, pp. 1-45.

4. Lin, H.-P., Mou, Ch.-Y., Structural and morphological control of cationic surfactant-templated mesoporous silica, Acc. Chem. Res., 2002, 35, pp. 927-935.

5. Huo, Q., Margolese, D.I., Stucky, G.D., Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem. Mater., 1996, 8, pp. 1147-1160.

6. Hoffmann, F., Cornelius, M., Morell, J., Fröba, M., Silica-based mesoporous organic-inorganic hybrid materials, Angew. Chem. Int. Ed., 2006, 45, pp. 3216-3251.

7. Ying, J.Y., Mehnert, C.P., Wong, M.S., Synthesis and applications of supramolecular-templated mesoporous materials, Angew. Chem. Int. Ed., 1999, 38, pp. 56-77.

8. Wang, G., Otuonye, A.N., Blair, E.A., Denton, K., Tao, Z., Asefa, T., Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study, J. Solid State Chem., 2009, 182, pp. 1649-1660.

9. Mal, N.K., Fujiwara, M., Tanaka, Y., Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature, 2003, 421, pp. 350-353.

10. Kim, S.-N., Son, W.-J., Choi, J.-S., Ahn, W.-S., CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis, Micropor. Mesopor. Mater., 2008, 115, pp. 497-503.

11. Yoshitake, H., Yokoi, T., Tatsumi, T., Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1, Chem. Mater., 2002, 14, pp. 4603-4610.

12. Saad, R., Hamoudi, S., Belkacemi, K., Adsorption of phosphate and nitrate anions on ammonium-functionalized mesoporous silicas, J. Porous Mater., 2008, 15, pp. 315-323.

13. Huang, H.Y., Yang, R.T. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 2003, 42, pp. 2427-2433.

14. Liu, A.M., Hidajat, K., Kawi, S., Zhao, D.Y., A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions, Chem. Commun., 2000, 13, pp. 1145-1146.

15. Lei, Ch., Shin, Y., Liu, J., Ackerman, E.J., Entrapping enzyme in a functionalized nanoporous support, JACS, 2002, 124, pp. 11242-11243.

16. Kang, T., Park, Y., Choi, K., Lee, J.S., Yi J., Ordered mesoporous silica derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions. J. Mater. Chem., 2004, 14, pp. 1043-1049.

17. Zelenak, V., Halamova, D., Gaberova, L., Bloch, E., Llewellyn, P., Amine-modified SBA-12 mesoporous silica for carbon dioxide capture, Micropor. Mesopor. Mater., 2008, 116, pp. 358-364.

18. Wei, J., Shi, J., Pan, H., Zhao, W., Ye, Q., Shi, Y., Adsorption of carbon dioxide on organically functionalized SBA-16, Micropor. Mesopor. Mater., 2008, 116, pp. 394-399.

19. Huh, S., Wiench, J.W., Yoo, J.-Ch., Pruski, M., Lin, V.S.-Y., Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method, Chem. Mater. 2003, 15, pp. 4247-4256.

20. Trewyn, B.G., Slowing, I.I., Giri, S., Chen, H.-T., Lin, V.S.-Y., Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release, Acc. Chem. Res., 2007, 40, pp. 846-853.

21. Kumar, P., Guliants, V.V., Periodic mesoporous organic–inorganic hybrid materials: Applications in membrane separations and adsorption, Micropor. Mesopor. Mater., 2010, 132, pp. 1-14.

22. Yang, Q., Liu, J., Zhang, L., Li, C., Functionalized periodic mesoporous organosilicas for catalysis, J. Mater. Chem., 2009, 19, pp. 1945-1955.

23. Martin, T., Galarneau, A., Di Renzo, F., Brunel, D., Fajula, F., Great improvement of chromatographic performance using MCM-41 spheres as stationary phase in HPLC, Chem. Mater., 2004, 16, pp. 1725-1731.

24. Hatton, B. D., Landskron, K., Whitnall, W., Perovic, D. D., Ozin, G. A. Spin-coated PMOs thin films towards a new generation of low-dielectric-constant materials, Adv. Funct. Mater., 2005, 15, pp. 823-829.

25. Vidal, C.B., Barros, A.L., Moura, C.P., de Lima, A.C.A., Dias, F.S., Vasconcellos, L.C.G., Fechine, P.B.A., Nascimento, R.F., Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica, J. Colloid Interf. Sci., 2011, 357, pp. 466-473.

26. Macquarrie, D.J., Jackson, D.B., Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica, Chem. Commun., 1997, 18, pp. 1781-1782.

27. Macquarrie, D.J., Jackson, D.B., Tailland, S., Utting, K.A., Organically modified hexagonal mesoporous silicas (HMS) – remarkable effect of preparation solvent on physical and chemical properties, J. Mater. Chem., 2001, 11, pp. 1843-1849.

28. Pereira, C., Alves, C., Monteiro, A., Magén, C., Pereira, A.M., Ibarra, A., Ibarra, M.R., Tavares, P.B., Araújo, J.P., Blanco, G., Pintado, J.M., Carvalho, A.P., Pires, J., Pereira, M.F.R., Freire, C., Designing novel hybrid materials by one-pot co-condensation: From hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles, Appl. Mater. Interfaces., 2011, 3, pp. 2289-2299.

29. He, Q., Shi J., Cui, X., Zhao, J., Chen, Y., Zhou, J., Rhodamine B-co-condensed spherical SBA-15 nanoparticles: Facile co-condensation synthesis and excellent fluorescence features, J. Mater. Chem., 2009, 19, pp. 3395-3403.

30. Brunelli, N.A., Venkatasubbaiah, K., Jones, C.W., Cooperative catalysis with acid-base bifunctional mesoporous silica: Impact of grafting and co-condensation synthesis methods on material structure and catalytic properties, Chem. Mater., 2012, 24, pp. 2433-2442.

31. Corriu, R.J.P., Mehdi, A., Reyé, C., Thieuleux, C. Direct synthesis of functionalized mesoporous silica by non-ionic assembly routes. Chem. Mater., 2004, 16, pp. 159-166.

32. Salesch, T., Bachmann, S., Brugger, S., Rabelo-Schaefer, R., Albert, K., Steinbrecher, S., Plies, E., Mehdi, A., Reyé, C., Corriu, R.J.P., Lindner, E., New inorganic-organic hybrid materials for HPLC separation obtained by direct synthesis in the presence of a surfactant, Adv. Funct. Mater., 2002, 12, pp. 134-142.

33. Aguado, J., Arsuaga, J.M., Arencibia, A., Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained by co-condensation, Micropor. Mesopor. Mater., 2008, 109, pp. 513-524.

34. Aguado, J., Arsuaga, J.M., Arencibia, A. Lindo, M., Gascón, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica, J. Hazard. Mater., 2009, 163, pp. 213-221.

35. Da’na, E., De Silva, N., Sayari, A. Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: Kinetics properties, Chem. Eng. J., 2011, 166, pp. 454-459.

36. Song, S.-W., Hidajat, K., Kawi, S., Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions, Langmuir, 2005, 21, pp. 9568-9575.

37. Lou, L.-L., Jiang, S., Yu, K., Gu, Z., Ji, R., Dong, Y., Liu, S., Mesoporous silicas functionalized with aminopropyl via co-condensation: Effective supports for chiral Mn(III) salen complex, Micropor. Mesopor. Mater., 2011, 142, pp. 214-220.

38. Mureseanu, M., Reiss, A., Cioatera, N., Trandafir, I., Hulea, V., Mesoporous silica functionalized with 1-furoyl thiourea urea for Hg(II) adsorption from aqueous media, J. Hazard. Mater., 2010, 182, pp. 197-203.

39. Xia, H.-S., Zhou, (Clayton) Ch.-H., Tong, D.S., Lin, Ch.X., Synthesis chemistry and application development of periodic mesoporous organosilicas, J. Porous Mater., 2010, 17, pp. 225-252.

40. Hamoudi, S., Yang, Y., Moudrakovski, I.L., Lang, S., Sayari, A., Synthesis of porous organosilicates in the presence of alkytrimethylammonium chlorides:  Effect of the alkyl chain length, J. Phys. Chem. B, 2001, 105, pp. 9118-9123.

41. Muth, O., Schellbach, C., Fröba, M., Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large pores, Chem. Commun., 2001, 19, pp. 2032-2033.

42. Mizoshita, N., Tania, T., Inagaki, S., Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors, Chem. Soc. Rev., 2011, 40, pp. 789-800.

43. Van Der Voort, P., Esquivel, D., De Canck, E., Goethals, F., Van Driessche, I., Romero-Salguero, F.J., Periodic Mesoporous Organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications, Chem. Soc. Rev., 2013, 42, pp. 3913-3955.

44. Huirache-Acuña, R., Nava, R., Peza-Ledesma, C.L., Lara-Romero, J., Alonso-Núñez, G., Pawelec, B., Rivera-Muñoz, E.M., SBA-15 silica as catalytic support for hydrodesulfurization catalysts, Materials, 2013, 6, pp. 4139-4167.

45. Yang, X., Chen, D., Liao, S., Song, H., Li, Y., Fu, Z., Su, Y., High-performance Pd-Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation, J. Catal., 2012, 291, p. 36.

46. Engström, K., Johnston, E.V., Verho, O., Gustafson, K.P.J., Shakeri, M.,. Tai, Ch.-W,

Bäckvall, J.-E., Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: an artificial metalloenzyme, Angew. Chem., 2013, 125, pp. 14256-14260.

47. Qiao, S.Z., Djojoputro, H., Hu, Q., Lu, G.Q., Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica, Prog. Solid State Ch., 2006, 34, pp. 249-256.

48. Trammell, S.A., Zeinali, M., Melde, B.J., Charles, P.T., Velez, F.L., Dinderman, M.A., Kusterbeck, A., Markowitz, M.A., Nanoporous organosilicas as preconcentration materials for the electrochemical detection of trinitrotoluene, Anal. Chem., 2008, 80, pp. 4627-4633.

49. Burleigh, M.C., Markowitz, M.A., Spector, M.S., Gaber, B.P., Porous polysilsesquioxanes for the adsorption of phenols, Environ. Sci. Technol., 2002, 36, pp. 2515-2518.

50. Yang, Q., Li, Y., Zhang, L., Yang, J., Liu, J., Li, C., Hydrothermal stability and catalytic activity of aluminum-containing mesoporous ethane-silicas, J. Phys. Chem. B, 2004, 108, pp. 7934-7937.

51. Corma, A., Das, D., García, H., Leyva, A., A periodic mesoporous organosilica containing a carbapalladacycle complex as heterogeneous catalyst for Suzuki cross-coupling. J. Catal. 2005, 229, pp. 322-331.

52. Huang, J., Zhu, F., He, W., Zhang, F., Wang, W., Li, H., Periodic mesoporous organometallic silicas with unary or binary organometals inside the channel walls as active and reusable catalysts in aqueous organic reactions, JACS, 2010, 132, pp. 1492-1493.

53. Zhang, F., Li, H., Water-medium organic synthesis over active and reusable organometal catalysts with tunable nanostructures, Chem. Sci., 2014, 5, pp. 3695-3707.

54. Yang, Q., Kapoor, M.P., Inagaki, S., Shirokura, N., Kondo, J.N., Domen, K., Catalytic application of sulfonic acid functionalized mesoporous benzene-silica with crystal-like pore wall structure in esterification, J. Mol. Catal. A, 2005, 230, pp. 85-89.

55. Zhang, L., Zhang, W., Shi, J., Hua, Z., Li, Y., Yan, J., A new thioether functionalized organic-inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbent, Chem. Commun., 2003, 2, pp. 210-211.

56. Hamoudi, S, Royer, S, Kaliaguine, S., Propyl- and arene-sulfonic acid functionalized periodic mesoporous organosilicas, Micropor. Mesopor. Mater., 2004, 71, pp. 17-25.

57. Zhang, W.-H., Zhang, X., Zhang, L., Schroeder, F., Harish, P., Hermes, S., Shi, J., Fischer, R.A., Synthesis of periodic mesoporous organosilicas with chemically active bridging groups and high loadings of thiol groups, J. Mater. Chem., 2007, 17, pp. 4320-4326.