backBack to 4/2015
Technical Issues
4/2015 pp. 11-18

Wyrafinowane spektroskopowe metody instrumentalne w badaniach związków nieorganicznych

pdf Get full text pdf


The instrumental spectroscopic methods are very important in nowadays scientific studies. The most of instrumental methods (e.g. IR, NMR, EPR, UV-Vis, mass spectrometry) are well grounded and used in the laboratory practice. In the article the methods of instrumental spectroscopy which are very significant in the studies of inorganic compounds were selected and described. The authors paid particular attention to the unpopular methods, such as: Resonance Raman spectroscopy, Mössbauer spectroscopy, Nuclear Quadrupole Resonance and photoelectron spectroscopy. They described spectroscopic base of these methods as well as the application based on the analysis of the particular examples of inorganic compounds. This article is an interdisciplinary review. It is the first work in literature that emphasizes many different and complex aspects of sophisticated spectroscopy methods in the modern inorganic analysis.

Key words

instrumental methods, inorganic compounds, spectroscopy


1. Atkins, P., Chemia fizyczna, Warszawa, 2007, PWN.

2. Kęcki, Z., Podstawy spektroskopii molekularnej, Warszawa, 1992, PWN.

3. Cygański, A., Metody spektroskopowy w chemii analitycznej, Warszawa, 2009, WNT.

4. Ewing, G., Metody instrumentalne w analizie chemicznej, Warszawa, 1980, PWN.

5. Zweig, G., Sherma, J., Analytical Methods of Pesticides and Plant Growth Regulators. Volume IX: Spectroscopic Methods of Analysis, NY, 1997, Academic Press.

6. Johannsen, F., Preetz, W., Resonance Raman-spectra of trans-tetrahalogenodicarbonylosmates III, Journal of chemical sciences, 1977, 32(6), pp. 625-627.

7. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds – Part A, John Wiley & Sons, 2009.

8. Cotton, F., Murillo, C., Walton, R., Multiple Bonds between Metal Atoms, Springer-Verlag New York, 2005.

9. Gonser, U., From a Strange Effect to Mössbauer Spectropscopy. Topics in Applied Physics, Springer – Verlag, 1975, 5, pp. 11-27.

10. Wertheim, G.K., Mössbauer Effect: Principles and Applications, Academic Press, New York, 1964.

11. Cranshaw T. 1985. Mössbauer Spectroscopy and Its Applications. Cambridge University Press.

12. Greenwood, N., Gibb, T.,  Mössbauer Spectroscopy, Chapman & Hall, Londyn, 1971.

13. Collins, M., Spalding, T., Deeney, F., Longoni, G., Pergola, R., Venäläinen, T.., 57Fe Mössbauer spectroscopic study of some clusters related to Fe3(CO)12 , Journal of Organometallic Chemistry, 1986, 317, pp. 243–253.

14. Dickson, D., Berry, F., Mössbauer Spectroscopy, Cambridge University Press, 1986.

15. Smith, J., Nuclear quadrupole resonance spectroscopy. General principles, Journal of Chemical Education, 1971, 48(1), p. 39.

16. Edward, G., Graybeal, J., Theory and Analytical Applications of Nuclear Quadrupole Resonance Spectroscopy, Critical Reviews in Analytical Chemistry, 2008, 3(3), pp. 243-270.

17. Man, P., Quadrupole Couplings in Nuclear Magnetic Resonance, General. Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2000.

18. Ghosh, P., Introduction to Photoelectron Spectroscopy, John Wiley & Sons, 1983.

19. Suga, S., Sekiyama, A., Photoelectron Spectroscopy. Springer, 2014.

20. Van der Heide, P. 2012. X-ray Photoelectron Spectroscopy: An introduction to Principles and Practices, John Wiley & Sons, 2012.

21. Hufner, S., Very High Resolution Photoelectron Spectroscopy, Springer, 2007.

22. Evans, S., Green, M., Jewitt, B., Orchard A., Pygall, C., Electronic structure of metal complexes containing π-cyclopentadienyl and related ligands. Part 1.—He(I) photoelectron spectra of some closed-shell metallocenes, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1972, 68, pp. 1847-1865.

23. Kelsall, R., Hamley, I., Geoghegan, M., Nanotechnologie, Warszawa, 2008, PWN.