1/2016 pp. 21-29
Systemy monitorowania konstrukcji w inżynierii lądowej – wczoraj, dzisiaj i jutro
Get full text pdf
Abstract
Structural health monitoring systems (SHM) are used to gain information about the work of the structure under real operating conditions, i.e. taking into account the material heterogeneity, geometrical imperfections, cooperation with the subsoil, boundary conditions, real load schemes etc. Design and development of SHM systems requires interdisciplinary cooperation and often individual approach. Today, to build long-term systems we use, among others, vibrating wire gages, whose design allows for measuring various physical quantities, for example strains, linear and angular displacements, stress or pressure. Such sensors perform spot measurements. However, it seems that the future of structural health monitoring systems is closely related to the application of optic fiber technology, which allows for the measurement of various physical quantities continuously along the optical fiber length. The article presents examples of SHM systems recently implemented in Poland and the outline of laboratory tests associated with application of the latest technology.
Key wordsstructural health monitoring systems, vibrating wire gages, optical fibers
References1. Furtner, P., Wenzel, H., Structural Health Monitoring at the Civil Infrastructure: Recent progress & Future Demands. 4th International Conference on SHM of Intelligent Structure, Zurich 2009.
2. Xu, Y.L., Xia Y., Structural Health Monitoring of Long-Span Suspension Bridges, Spon Press. London and New York, 2012.
3. Bednarski, Ł., Sieńko, R., Howiacki, T., Wybrane zagadnienia monitorowania konstrukcji. XXX Jubileuszowe Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji. Szczyrk, 2015.
4. Bednarski, Ł., Sieńko, R., Pomiary odkształceń konstrukcji czujnikami strunowymi, Inżynieria i Budownictwo, 2013, 11, s. 615-619.
5. Baker, J.F., Choice of a Strain Gauge, Geotechnical Instrumentation News, 2007, December, pp. 4-7.
6. Sieńko, R., Konstrukcje kablobetonowe. XXV Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji. Szczyrk, 10-13 marca, 2010.
7. Kadela, M., Bednarski, Ł. 2014. Wytyczne obserwacji ciągłej obiektów zlokalizowanych na terenach górniczych, Przegląd Górniczy, 2014, 8, s. 78-84.
8. Wójcicki, Z., Grosel, J., Sawicki, W., Eksperymentalne badania dynamiczne budowli. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2014.
9. Kawecki, J., Stypuła, K., Zapewnienie komfortu wibracyjnego ludziom w budynkach narażonych na oddziaływania komunikacyjne, Wydawnictwo Politechniki Krakowskiej, Kraków, 2013.
10. Skłodowski, M., Współczesny monitoring obiektów budowlanych, Przegląd Budowlany, 2009, 3, s. 37-46.
11. Samiec, D., Distributed fibre-optic temperature and strain measurement with extremely high spatial resolution, Photonic International, 2012, pp. 10-13.
12. Delepine-Lesoille, S., Merliot, E., Boulay, C., Quetel, L., Delaveau, M., Courteville, A., Quasi-distributed optical fibre extensometers for continous embedding into concrete: design and realization, Smart Materials and Structures, 2006, 15, pp. 931–938.
13. Zhou, Z., Wang, B., Ou, J., Local Damage Detection of RC Structures With Distributive FRP-OFBG Sensors. Second International Workshop on Structural Health Monitoring of Innovative Civil Engineering Structures. Winnipeg, Canada, 2004.
14. López-Higuera, J., Cobo, L., Incera, A., Cobo, A., 2011. Fiber Optic Sensors in Structural Health Monitoring, Journal of Lightwave Technology, 2011, Vol. 29, no. 4, pp. 587–608.