backBack to 2/2016
Technical Issues
2/2016 pp. 11-17

Nowe technologie w asymetrycznej syntezie α,α-dipodstawionych α-aminokwasów

pdf Get full text pdf


Optically active α,α-disubstituted α-amino acids represent a privileged structural motif present in numerous natural products and pharmacologically active molecules. These compounds have interesting biological properties owing to the presence of the quaternary stereogenic center. In recent years intensive development of methods for the synthesis of α,α-disubstituted α-amino acids has been observed. Azlactones constitute an important group of quaternary amino acid precursors that have found widespread application in organic synthesis. The aim of our work was to develop a new enantioselective methods for the synthesis α,α-disubstituted α-amino acids containing either geminal bisphosphonate, 3,4-dihydrocoumarin or tetrahydrothiophene moiety. Michael addition constitutes a key step in the developed synthetic strategies. The reactions were performed under basic conditions, using cinchona alkaloid derivatives with the proposed synthetic technologies being highly stereoselective.

Key words

organocatalysis, azlactones, geminal bisphosphonates, 3,4-dihydrocoumarins, tetrahydrothiophenes, α,α-disubstituted amino acids


1. Ohfune, Y., Shinada, T., Enantio- and Diastereoselective Construction of α,α-Disubstituted α-Amino Acids for the Synthesis of Biologically Active Compounds, Eur. J. Org. Chem., 2005, 24, pp. 5127–5143.

2. Cativiela, C., Díaz-de-Villegas, M.D., Recent progress on the stereoselective synthesis of acyclic quaternary a-amino acids, Tetrahedron: Asymmetry, 2007, 18, pp.. 569–623.

3. Vogt, H., Bräse, S., Recent approaches towards the asymmetric synthesis of α,α-disubstituted α-amino acids, Org. Biomol. Chem., 2007, 5, pp. 406–430.

4. Alba, A-N.R., Rios, R., Oxazolones in organocatalysis, new tricks for an old reagent, Chem. Asian. J., 2011, 6, pp. 720 –734.

5. Dzięgielewski, M., Hejmanowska, J., Albrecht, Ł., A Convenient Approach to a Novel Group of Quaternary Amino Acids Containing a Geminal Bisphosphonate Moiety, Synthesis, 2014, 46, pp. 3233–3238.

6. Hejmanowska, J., Albrecht, A., Pięta, J., Albrecht, Ł., Asymmetric Synthesis of 3,4-Dihydrocoumarins Bearing an α,α-Disubstituted Amino Acid Moiety, Adv. Synth. Catal., 2015, 357, pp. 3843–3848.

7. Obrecht, D., Abrecht, C., Altorfer, U., Bohdal, A., Grieder, M., Klever, M., Pfyler, P., Muller, L., Synthesis, Conformational Properties, and Synthetic Applications of Novel Optically Pure α,α-Disubstituted (R)- and (S)-Glycines (‘α-Chimeras’) Combining Side Chains of Asp, Glu, Leu, Phe, Ser, and Val. Helv., Chim. Acta, 1996, 79, pp. 1315–1337.

8. Honda, T., Koizumi, T., Komatsuzaki, Y., Yamashita, R., Kanai, K., Nagase, H.,  Chemoenzymatic synthesis of an α-substituted serine derivative, Tetrahedron: Asymmetry, 199, 10, pp. 2703–2712.

9. Omura, S., Fujimoto, T., Otaguro, K., Matsuzaki, K., Moriguchi, R., Tanaka, H., Sasaki, Y., Lactacystin, a Novel Microbial Metabolite, Induces Neuritogenesis of Neuroblastoma-Cells, J. Antibiot., 1991, 44, pp. 113–116.

10. Fenteany, G., Schreiber, S.L., Lactacystin, proteasome function, and cell fate. J. Biol. Chem., 1998, 273, pp. 8545–8548.

11. DeMartino, G.N., Slauter, C.A., The proteasome, a novel protease regulated by multiple mechanisms, J. Biol. Chem., 1999, 274, pp. 22123–22126.

12. Kobayasi, H., Shin-ya, K., Furihata, K., Hayakawa, Y., Seto, H., Absolute configuration of a novel glutamate receptor antagonist  kaitocephalin, Tetrahedron Lett., 2001, 42, pp. 4021–4023.

13. Bleekman, D., Lodge, D., Neuropharmacology of AMPA and kainate receptors, Neuropharmacology, 1998. 37, pp. 1187–1204.

14. Collingridge, G.L., Lester R.A., Excitatory amino acid receptors in the vertebrate central nervous system, Pharmacol. Rev., 1998, 40, pp. 143–210.

15. Zhang, S., Gangal, G., Uludag, H., 'Magic bullets' for bone diseases: progress in rational design of bone-seeking medicinal agents, Chem. Soc. Rev., 2007, 36, pp. 507–531.

16. Musa, M.A., Cooperwood, J.S., Khan, M.O.F., A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer, Curr. Med. Chem., 2008, 15, pp. 2664-2679.

17. Sridharan, V., Suryavanshi, P. A., Menendez, J.C., Advances in the Chemistry of Tetrahydroquinolines, Chem. Rev., 2011, 111, pp. 7157–7259.

18. O’Connor, C.J., Roydhouse, M.D., Przybyt, A.M., Wall, M.D, Southern, J.M., Facile Synthesis of 3-Nitro-2-substituted Thiophenes., J. Org. Chem., 2010, 75, pp. 2534–2538.

19. Gütschow, M., Neumann, U., Novel thieno[2,3-d][1,3]oxazin-4-ones as inhibitors of human leukocyte elastase,

J. Med. Chem., 1998, 41, pp. 1729–1740.

20. Mukaiyama, T., Asanuma, H., Hachiya, I., Harada, T., Kobayashi, S., An Efficient Asymmetric Aldol Reaction Promoted by a Chiral Tin(II) Lewis Acid Consisting of Tin(II) Triflate, (R)-2-[(N-1-Naphthylamino) methyl]tetrahydrothiophene and a Tin(IV) Compound, Chem. Lett., 1991, 7, pp. 1209–1212.

21. Hauptman, E., Shapiro, R., Marshall, W., Synthesis of Chiral Bis(phosphinite) Ligands with a Tetrahydrothiophene Backbone:  Use in Asymmetric Hydrogenation, Organometallics, 1998, 17, pp. 4976–4982.

22. Hejmanowska, J., Albrecht, Ł., Arkivoc, (w druku).